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Introduction

What is an Event Data Model?

Why is one useful?

What are common features?
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Classes and Instances

• Instance

• a unit that combines a specific state (data) and the 
functions used to manipulate it (methods)

• Class

• a type that defines related instances

• a description of what the instances have in common 
(types of data, method definitions)

• the body of code that manipulates the data in the 
instances

• A program can have multiple instances of the 
same class, each with different values
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Parameterized Classes

• Class template

• A description for how to write a class

• Describes a family of classes that share 
common characteristics

• Instantiating a class template causes the 
compiler to write a class; one can then 
make instances of the class

• std::vector — class template

• std::vector<float> — instantiated class

• std::vector<float> vf — object, or instance
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What is an Event Data Model?

• An Event Data Model (EDM) provides a 
mechanism for managing data related 
to an physics event within a program

• An EDM is not:

• a persistency mechanism

• an I/O mechanism

• a file format

… although it is related to all of these 
things
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Why is an EDM Useful?

• It allows for independence of 
reconstruction modules

• This assumes a modular framework

• Modules communicate only via the EDM

• true whether modules are C++ or Fortran

• Modules can be developed and maintained 
independently – critical for maintainability
of a large body of code
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Why is an EDM Useful?

• Can isolate users from need to interact 
with persistency mechanism

• implementation of streaming

• Can isolates users from I/O mechanism

• details of reading files

• Can isolates users from changes in file 
formats
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General Features

• Some features are shared by all EDMs
• Event class, collection of data for one event

• Many classes representing various “pieces” 
of an event, and collections thereof:
• tracking hits; calorimeter energies

• tracks, candidate particles (electron, tau, jet, ...)

• Navigation classes
• efficient location of specific “pieces”

• associations between “pieces” of the Event 

• Metadata classes
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Common Needs

• More than one algorithm can produce 
each kind of output

• need to be able to hold, and uniquely 
identify, the output of a specific algorithm

• e.g. cone algorithm jets and KT algorithm jets

• A single algorithm can be configured with 
different parameters; need to distinguish

• e.g. R=0.7 cone jets and R=0.4 cone jets
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Common Needs

• Many different types of reconstructed 
“pieces” need to be stored in the event

• All these types make up “the EDM”

• Continuous need to add new types of 
“pieces” to the event
• it is impossible to predict them all at the 

outset of the experiment

• the EDM grows as the need arises

• Sometime we call the core classes “the 
EDM”
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Identifying BTeV Requirements

• “You can get at the data, whatever 
language you speak”
• in the trigger? offline?

• “Data structures should have fixed 
maximum sizes”
• goal is  speed – time not wasted allocating 

and freeing memory

• can be achieved in different manners, 
allowing one to retain a flexible EDM

• Full data access for Fortran, no copying
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Mission Impossible?

1. Trigger code must access data without 
requiring any copying of data

2. It must be possible to write triggers in 
Fortran 77

• Why not both?

• Fortran common blocks are disconnected 
from an object-based EDM

• Tremendous difficulty mapping even 
simple C++ structures into Fortran
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Before Designing an EDM

• Need to start with requirements

• required features

• attractive features

• priorities

• Possible to modify an existing EDM, or 
design from scratch

• An overview of some existing data 
models may help illustrate the range of 
possibilities ...



The Survey

A tour through the major 
features of the CDF, DØ, Gaudi 
and MiniBooNE event models
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• A more detailed document on this topic shall 
be available, at:

• This survey is an extract of the tables from the 
current version of that document

• Please contact the authors with any 
corrections

• paterno@fnal.gov & jbk@fnal.gov

http://www-cdserver.fnal.gov/
public/cpd/aps/EDMSurvey.htm
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Overview

• The CDF and DØ EDMs are in active 
use by those experiments, respectively

• The Gaudi EDM is under development 
by the LHCb experiment

• The MiniBooNE EDM is in active use, 
but still undergoing development. 
MiniBooNE uses both C++ and Fortran

• Features viewed from C++: MB

• Features viewed from Fortran: MBF
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Access to the Event

How does a user gain access to an Event?

• CDF passed into functions; also global

• DØ passed into functions

• Gaudi search in global registry

• MB passed into functions

• MBF globally available

• Global access will have some influence 
on ability to handle multiple events
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Event Multiplicity

During development, testing, and 
simulation, it is sometimes useful to 
handle more than one Event at a time

Can we have more than one Event?
• CDF Yes, but use of global causes trouble

• DØ Yes

• Gaudi Not yet; plans are to access “named” 
instances

• MB Yes

• MBF No; too hard to do in Fortran
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Definition of Event Data Object

• The Event is a container of objects
• raw data; MC particles; GEANT hits

• trigger results, reconstructed objects

• Each experiment has its own terminology for 
the constituents of an Event
• CDF storable objects

• DØ chunks

• Gaudi data objects

• MB chunks

• Often, the things the Events collects are 
themselves collections (of hits, tracks, jets ...)
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Event Interface

What is the “look and feel” of an Event?

• CDF collection with “generic” iterator

• DØ “database” with type safe queries

• Gaudi filesystem-like hierarchy of named 
nodes

• MB associative array of type safe nodes

• MBF subroutine calls to load common 
blocks
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Adding to the Event

How is a new object added to an Event?

• CDF ownership passed (design), no copy

• DØ ownership passed (design), no copy

• Gaudi ownership passed (convention), no 
copy

• MB ownership passed (design), no copy

• MBF copy from common block to C++ 
object, then as above

• Relying on convention is error prone!



Event Models 22

Mutability of Event Data

Can objects in the Event be modified?

• Desire for reproducibility argues this 
should be very tightly controlled

• CDF no, except that collections can grow

• DØ no

• Gaudi yes

• MB under development

• MBF under development



Event Models 23

Inheritance

Is inheritance from a base class needed?

• CDF from TObject via StorableObject

• must implement a streamer; requires CDF 
macro, to write some of the interface required 
by ROOT

• DØ from d0_Object via AbsChunk

• requires DØ macro, to write some of the 
interface required by DOOM; requires 
possession of various IDs
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Inheritance (cont’d)

• Gaudi from DataObject

• must be able to return a globally unique ID for 
the class.

• MB none

• Should be a POD; current usage of ROOT 
violates this

• MBF none

• Any properly padded common block, no strings 
allowed
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EDO Multiplicity

Is it possible to access more than one 
instance of an EDO class at one time?

• Everyone needs this

• CDF tracks: needs more than one set, 
several competing algorithms

• DØ raw data: need more than one in 
simulation

• This ability generates a requirement for 
labelling EDOs.
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EDO Multiplicity (continued)

Is it possible to access more than one 
instance of an EDO class at one time?

• CDF yes

• DØ yes

• Gaudi yes

• MB yes

• MBF no
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Labelling

How are objects in an Event labelled?

• CDF

• Unique object ID, configuration parameter set 
ID, descriptive string, class version, and class 
name

• DØ

• Unique object ID, configuration parameter set 
ID, parent object IDs, geometry & calibration 
IDs, and string labels
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Labelling (cont’d)

• Gaudi

• Class ID, descriptive string with hierarchical 
path

• MB

• Descriptive string and class name

• MBF

• Descriptive string
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Query Interface

How does a user specify which EDO he 
wants?

• CDF

• Custom iterators with optional selectors 
specifying a combination of labels

• DØ

• User specified criteria based on object data or 
specific labelling information; multiple objects 
returned
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Query Interface (cont’d)

• Gaudi

• string path information

• MB

• Class name/descriptive string; single object 
returned

• MBF

• Descriptive string; single object put into 
common block
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Query Results

In what form is the result returned?

• CDF

• Custom iterator; read-only access to the object 
they refer to and traversal to next object

• DØ

• Collection of handles that allow read-only 
access to the objects
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Query Results (cont’d)

• Gaudi

• Bare pointer to the base class object or to the 
object itself

• MB

• Read-only pointer to the object

• MBF

• Populated common block, a copy of the event 
data
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Multiple Matches

What happens if more than one EDO 
matches the query?

• CDF iterator moves through the matches

• DØ collection of matches is returned

• Gaudi not applicable

• MB no multiple matches implemented

• MBF no multiple matches allowed
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Support for Associations

What support is given for making 
associations between EDOs?

• Bare pointers are unsuitable

• When a pointed-to object is deleted

• When only parts of an Event are written

• When reading an Event

• “Smart pointers” of various sorts are the 
usual solution

• class templates with special behavior
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Parameterized Classes

• Class template

• A description for how to write a class

• Describes a family of classes that share 
common characteristics

• Instantiating a class template causes the 
compiler to write a class; one can then 
make instances of the class

• std::vector — class template

• std::vector<float> — instantiated class

• std::vector<float> vf — object, or instance
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Support for Associations

• CDF

• Special link classes that are converted from 
pointer to id and back automatically; links exist 
for objects with collection associations

• DØ

• Special link classes that are converted from 
pointer to id and back semi-automatically; link 
classes exist for top-level EDOs and for items 
within collections
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Support for Associations (cont’d)

• Gaudi

• Special link classes that re converted from 
pointer to id automatically; links exists for 
DataObjects or vectors

• MB

• currently no infrastructure support
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Restrictions on Associations

• In all cases, C++ object models disallow 
(by convention) use of bare pointers

• Associations are one-way, from “newer” 
objects to “older” objects

• enforced for CDF, DØ; convention for 
Gaudi

• Complex associations must be 
implemented in distinct EDOs
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Persistency Impositions

What requirements are placed on EDOs 
by the persistency mechanism?

• CDF macros, streamers, TObject

• DØ macros, d0_Object

• Gaudi all data public, or available with 
get/set methods

• MB macros

• MBF C struct, padded to map to common 
block
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I/O Format

What file format is used?
• CDF ROOT

• DØ DSPACK is standard, others are 
possible

• Gaudi Objectivity and ROOT

• MB ROOT

• MBF ROOT

• Multiple I/O formats are available for 
those designs that have isolated the 
persistency mechanism from the EDM
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Schema Evolution

• Mentioned several times as important
• New classes are added – easy!

• Existing classes are changed – harder

• Widely different degrees of automation
• CDF if statements in streamers

• DØ automated, using D0OM data 
dictionary

• Gaudi if statements in converters

• MB automated, using ROOT data 
dictionary
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Translation Mechanism

What is done to write out/read in an 
object?

• CDF
• Hand written code to write object's data into 
the ROOT buffer; transient representation 
typically differs significantly from the persistent 
form 

• DØ
• Automated by data dictionary; copies data to 
the Fortran bank structure, then to output. 
Rarely used activate/deactivate can do simple 
transient mapping.
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Translation Mechanism (cont’d)

• Gaudi

• Converter external to the class reads state out 
into the persistency package buffers; copy the 
data objects into objectivity objects, then write 
the those objects

• MB

• Automated by data dictionary, copies data to 
ROOT buffers.



Where to go from here?
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Questions for BTeV

• Are your requirements agreed upon?

• If not how will consensus be reached

• If so, are they clearly expressed?

• What process will be used to move from 
requirements to a solution?

• Concrete milestones

• Time estimates

• Continuous review of both to keep project 
on track


